import builtins
import copy
import itertools
import json
import math
import os
import re
import threading
from importlib.metadata import PackageNotFoundError
from importlib.metadata import version as _importlib_version
from pathlib import Path
import numpy as np
import yaml
import large_image
from large_image.cache_util import LruCacheMetaclass, methodcache
from large_image.constants import TILE_FORMAT_NUMPY, SourcePriority
from large_image.exceptions import TileSourceError, TileSourceFileNotFoundError
from large_image.tilesource import FileTileSource
from large_image.tilesource.utilities import _makeSameChannelDepth, fullAlphaValue
try:
__version__ = _importlib_version(__name__)
except PackageNotFoundError:
# package is not installed
pass
jsonschema = None
_validator = None
def _lazyImport():
"""
Import the jsonschema module. This is done when needed rather than in the
module initialization because it is slow.
"""
global jsonschema, _validator
if jsonschema is None:
try:
import jsonschema
_validator = jsonschema.Draft6Validator(MultiSourceSchema)
except ImportError:
msg = 'jsonschema module not found.'
raise TileSourceError(msg)
SourceEntrySchema = {
'type': 'object',
'additionalProperties': True,
'properties': {
'name': {'type': 'string'},
'description': {'type': 'string'},
'path': {
'decription':
'The relative path, including file name if pathPattern is not '
'specified. The relative path excluding file name if '
'pathPattern is specified. Or, girder://id for Girder '
'sources. If a specific tile source is specified that does '
'not need an actual path, the special value of `__none__` can '
'be used to bypass checking for an actual file.',
'type': 'string',
},
'pathPattern': {
'description':
'If specified, file names in the path are matched to this '
'regular expression, sorted in C-sort order. This can '
'populate other properties via named expressions, e.g., '
'base_(?<xy>\\d+).png. Add 1 to the name for 1-based '
'numerical values.',
'type': 'string',
},
'sourceName': {
'description':
'Require a specific source by name. This is one of the '
'large_image source names (e.g., this one is "multi".',
'type': 'string',
},
# 'projection': {
# 'description':
# 'If specified, the source is treated as non-geospatial and '
# 'then a projection is added. Set to None/null to use its '
# 'own projection if a overall projection was specified.',
# 'type': 'string',
# },
# corner points in the projection?
'frame': {
'description':
'Base value for all frames; only use this if the data does '
'not conceptually have z, t, xy, or c arrangement.',
'type': 'integer',
'minimum': 0,
},
'z': {
'description': 'Base value for all frames',
'type': 'integer',
'minimum': 0,
},
't': {
'description': 'Base value for all frames',
'type': 'integer',
'minimum': 0,
},
'xy': {
'description': 'Base value for all frames',
'type': 'integer',
'minimum': 0,
},
'c': {
'description': 'Base value for all frames',
'type': 'integer',
'minimum': 0,
},
'zSet': {
'description': 'Override value for frame',
'type': 'integer',
'minimum': 0,
},
'tSet': {
'description': 'Override value for frame',
'type': 'integer',
'minimum': 0,
},
'xySet': {
'description': 'Override value for frame',
'type': 'integer',
'minimum': 0,
},
'cSet': {
'description': 'Override value for frame',
'type': 'integer',
'minimum': 0,
},
'zValues': {
'description':
'The numerical z position of the different z indices of the '
'source. If only one value is specified, other indices are '
'shifted based on the source. If fewer values are given than '
'z indices, the last two value given imply a stride for the '
'remainder.',
'type': 'array',
'items': {'type': 'number'},
'minItems': 1,
},
'tValues': {
'description':
'The numerical t position of the different t indices of the '
'source. If only one value is specified, other indices are '
'shifted based on the source. If fewer values are given than '
't indices, the last two value given imply a stride for the '
'remainder.',
'type': 'array',
'items': {'type': 'number'},
'minItems': 1,
},
'xyValues': {
'description':
'The numerical xy position of the different xy indices of the '
'source. If only one value is specified, other indices are '
'shifted based on the source. If fewer values are given than '
'xy indices, the last two value given imply a stride for the '
'remainder.',
'type': 'array',
'items': {'type': 'number'},
'minItems': 1,
},
'cValues': {
'description':
'The numerical c position of the different c indices of the '
'source. If only one value is specified, other indices are '
'shifted based on the source. If fewer values are given than '
'c indices, the last two value given imply a stride for the '
'remainder.',
'type': 'array',
'items': {'type': 'number'},
'minItems': 1,
},
'frameValues': {
'description':
'The numerical frame position of the different frame indices '
'of the source. If only one value is specified, other '
'indices are shifted based on the source. If fewer values '
'are given than frame indices, the last two value given imply '
'a stride for the remainder.',
'type': 'array',
'items': {'type': 'number'},
'minItems': 1,
},
'channel': {
'description':
'A channel name to correspond with the main image. Ignored '
'if c, cValues, or channels is specified.',
'type': 'string',
},
'channels': {
'description':
'A list of channel names used to correspond channels in this '
'source with the main image. Ignored if c or cValues is '
'specified.',
'type': 'array',
'items': {'type': 'string'},
'minItems': 1,
},
'zStep': {
'description':
'Step value for multiple files included via pathPattern. '
'Applies to z or zValues',
'type': 'integer',
'exclusiveMinimum': 0,
},
'tStep': {
'description':
'Step value for multiple files included via pathPattern. '
'Applies to t or tValues',
'type': 'integer',
'exclusiveMinimum': 0,
},
'xyStep': {
'description':
'Step value for multiple files included via pathPattern. '
'Applies to x or xyValues',
'type': 'integer',
'exclusiveMinimum': 0,
},
'xStep': {
'description':
'Step value for multiple files included via pathPattern. '
'Applies to c or cValues',
'type': 'integer',
'exclusiveMinimum': 0,
},
'framesAsAxes': {
'description':
'An object with keys as axes and values as strides to '
'interpret the source frames. This overrides the internal '
'metadata for frames.',
'type': 'object',
'patternProperties': {
'^(c|t|z|xy)$': {
'type': 'integer',
'exclusiveMinimum': 0,
},
},
'additionalProperties': False,
},
'position': {
'type': 'object',
'additionalProperties': False,
'description':
'The image can be translated with x, y offset, apply an '
'affine transform, and scaled. If only part of the source is '
'desired, a crop can be applied before the transformation.',
'properties': {
'x': {'type': 'number'},
'y': {'type': 'number'},
'crop': {
'description':
'Crop the source before applying a '
'position transform',
'type': 'object',
'additionalProperties': False,
'properties': {
'left': {'type': 'integer'},
'top': {'type': 'integer'},
'right': {'type': 'integer'},
'bottom': {'type': 'integer'},
},
# TODO: Add polygon option
# TODO: Add postTransform option
},
'scale': {
'description':
'Values less than 1 will downsample the source. '
'Values greater than 1 will upsample it.',
'type': 'number',
'exclusiveMinimum': 0,
},
's11': {'type': 'number'},
's12': {'type': 'number'},
's21': {'type': 'number'},
's22': {'type': 'number'},
},
},
'frames': {
'description': 'List of frames to use from source',
'type': 'array',
'items': {'type': 'integer'},
},
'sampleScale': {
'description':
'Each pixel sample values is divided by this scale after any '
'sampleOffset has been applied',
'type': 'number',
},
'sampleOffset': {
'description':
'This is added to each pixel sample value before any '
'sampleScale is applied',
'type': 'number',
},
'style': {'type': 'object'},
'params': {
'description':
'Additional parameters to pass to the base tile source',
'type': 'object',
},
},
'required': [
'path',
],
}
MultiSourceSchema = {
'$schema': 'http://json-schema.org/schema#',
'type': 'object',
'additionalProperties': False,
'properties': {
'name': {'type': 'string'},
'description': {'type': 'string'},
'width': {'type': 'integer', 'exclusiveMinimum': 0},
'height': {'type': 'integer', 'exclusiveMinimum': 0},
'tileWidth': {'type': 'integer', 'exclusiveMinimum': 0},
'tileHeight': {'type': 'integer', 'exclusiveMinimum': 0},
'channels': {
'description': 'A list of channel names',
'type': 'array',
'items': {'type': 'string'},
'minItems': 1,
},
'scale': {
'type': 'object',
'additionalProperties': False,
'properties': {
'mm_x': {'type': 'number', 'exclusiveMinimum': 0},
'mm_y': {'type': 'number', 'exclusiveMinimum': 0},
'magnification': {'type': 'integer', 'exclusiveMinimum': 0},
},
},
# 'projection': {
# 'description': 'If specified, sources are treated as '
# 'non-geospatial and then this projection is added',
# 'type': 'string',
# },
# corner points in the projection?
'backgroundColor': {
'description': 'A list of background color values (fill color) in '
'the same scale and band order as the first tile '
'source (e.g., white might be [255, 255, 255] for '
'a three channel image).',
'type': 'array',
'items': {'type': 'number'},
},
'basePath': {
'decription':
'A relative path that is used as a base for all paths in '
'sources. Defaults to the directory of the main file.',
'type': 'string',
},
'uniformSources': {
'description':
'If true and the first two sources are similar in frame '
'layout and size, assume all sources are so similar',
'type': 'boolean',
},
'dtype': {
'description': 'If present, a numpy dtype name to use for the data.',
'type': 'string',
},
'singleBand': {
'description':
'If true, output only the first band of compositied results',
'type': 'boolean',
},
'axes': {
'description': 'A list of additional axes that will be parsed. '
'The default axes are z, t, xy, and c. It is '
'recommended that additional axes use terse names '
'and avoid x, y, and s.',
'type': 'array',
'items': {'type': 'string'},
},
'sources': {
'type': 'array',
'items': SourceEntrySchema,
},
# TODO: add merge method for cases where the are pixels from multiple
# sources in the same output location.
},
'required': [
'sources',
],
}
[docs]
class MultiFileTileSource(FileTileSource, metaclass=LruCacheMetaclass):
"""
Provides tile access to a composite of other tile sources.
"""
cacheName = 'tilesource'
name = 'multi'
extensions = {
None: SourcePriority.MEDIUM,
'json': SourcePriority.PREFERRED,
'yaml': SourcePriority.PREFERRED,
'yml': SourcePriority.PREFERRED,
}
mimeTypes = {
None: SourcePriority.FALLBACK,
'application/json': SourcePriority.PREFERRED,
'application/yaml': SourcePriority.PREFERRED,
'text/yaml': SourcePriority.PREFERRED,
}
_minTileSize = 64
_maxTileSize = 4096
_defaultTileSize = 256
_maxOpenHandles = 6
def __init__(self, path, **kwargs): # noqa
"""
Initialize the tile class. See the base class for other available
parameters.
:param path: a filesystem path for the tile source.
"""
super().__init__(path, **kwargs)
_lazyImport()
self._validator = _validator
self._largeImagePath = self._getLargeImagePath()
self._lastOpenSourceLock = threading.RLock()
# 'c' must be first as channels are special because they can have names
self._axesList = ['c', 'z', 't', 'xy']
if isinstance(path, dict) and 'sources' in path:
self._info = path.copy()
self._basePath = '.'
self._largeImagePath = '.'
try:
self._validator.validate(self._info)
except jsonschema.ValidationError:
msg = 'File cannot be validated via multi-source reader.'
raise TileSourceError(msg)
elif not os.path.isfile(self._largeImagePath):
try:
possibleYaml = self._largeImagePath.split('multi://', 1)[-1]
self._info = yaml.safe_load(possibleYaml)
self._validator.validate(self._info)
self._basePath = Path('.')
except Exception:
raise TileSourceFileNotFoundError(self._largeImagePath) from None
else:
try:
with builtins.open(self._largeImagePath) as fptr:
start = fptr.read(1024).strip()
if start[:1] not in ('{', '#', '-') and (start[:1] < 'a' or start[:1] > 'z'):
msg = 'File cannot be opened via multi-source reader.'
raise TileSourceError(msg)
fptr.seek(0)
try:
import orjson
self._info = orjson.loads(fptr.read())
except Exception:
fptr.seek(0)
self._info = yaml.safe_load(fptr)
except (json.JSONDecodeError, yaml.YAMLError, UnicodeDecodeError):
msg = 'File cannot be opened via multi-source reader.'
raise TileSourceError(msg)
try:
self._validator.validate(self._info)
except jsonschema.ValidationError:
msg = 'File cannot be validated via multi-source reader.'
raise TileSourceError(msg)
self._basePath = Path(self._largeImagePath).parent
self._basePath /= Path(self._info.get('basePath', '.'))
for axis in self._info.get('axes', []):
if axis not in self._axesList:
self._axesList.append(axis)
self._collectFrames()
def _resolvePathPatterns(self, sources, source):
"""
Given a source resolve pathPattern entries to specific paths.
Ensure that all paths exist.
:param sources: a list to append found sources to.
:param source: the specific source record with a pathPattern to
resolve.
"""
kept = []
pattern = re.compile(source['pathPattern'])
basedir = self._basePath / source['path']
if (self._basePath.name == Path(self._largeImagePath).name and
(self._basePath.parent / source['path']).is_dir()):
basedir = self._basePath.parent / source['path']
basedir = basedir.resolve()
for entry in basedir.iterdir():
match = pattern.search(entry.name)
if match:
if entry.is_file():
kept.append((entry.name, entry, match))
elif entry.is_dir() and (entry / entry.name).is_file():
kept.append((entry.name, entry / entry.name, match))
for idx, (_, entry, match) in enumerate(sorted(kept)):
subsource = copy.deepcopy(source)
# Use named match groups to augment source values.
for k, v in match.groupdict().items():
if v.isdigit():
v = int(v)
if k.endswith('1'):
v -= 1
if '.' in k:
subsource.setdefault(k.split('.', 1)[0], {})[k.split('.', 1)[1]] = v
else:
subsource[k] = v
subsource['path'] = entry
for axis in self._axesList:
stepKey = '%sStep' % axis
valuesKey = '%sValues' % axis
if stepKey in source:
if axis in source or valuesKey not in source:
subsource[axis] = subsource.get(axis, 0) + idx * source[stepKey]
else:
subsource[valuesKey] = [
val + idx * source[stepKey] for val in subsource[valuesKey]]
del subsource['pathPattern']
sources.append(subsource)
def _resolveSourcePath(self, sources, source):
"""
Given a single source without a pathPattern, resolve to a specific
path, ensuring that it exists.
:param sources: a list to append found sources to.
:param source: the specific source record to resolve.
"""
source = copy.deepcopy(source)
if source['path'] != '__none__':
sourcePath = Path(source['path'])
source['path'] = self._basePath / sourcePath
if not source['path'].is_file():
altpath = self._basePath.parent / sourcePath / sourcePath.name
if altpath.is_file():
source['path'] = altpath
if not source['path'].is_file():
raise TileSourceFileNotFoundError(str(source['path']))
sources.append(source)
def _resolveFramePaths(self, sourceList):
"""
Given a list of sources, resolve path and pathPattern entries to
specific paths.
Ensure that all paths exist.
:param sourceList: a list of source entries to resolve and check.
:returns: sourceList: a expanded and checked list of sources.
"""
# we want to work with both _basePath / <path> and
# _basePath / .. / <path> / <name> to be compatible with Girder
# resource layouts.
sources = []
for source in sourceList:
if source.get('pathPattern'):
self._resolvePathPatterns(sources, source)
else:
self._resolveSourcePath(sources, source)
for source in sources:
if hasattr(source.get('path'), 'resolve'):
source['path'] = source['path'].resolve(False)
return sources
def _sourceBoundingBox(self, source, width, height):
"""
Given a source with a possible transform and an image width and height,
compute the bounding box for the source. If a crop is used, it is
included in the results. If a non-identify transform is used, both it
and its inverse are included in the results.
:param source: a dictionary that may have a position record.
:param width: the width of the source to transform.
:param height: the height of the source to transform.
:returns: a dictionary with left, top, right, bottom of the bounding
box in the final coordinate space.
"""
pos = source.get('position')
bbox = {'left': 0, 'top': 0, 'right': width, 'bottom': height}
if not pos:
return bbox
x0, y0, x1, y1 = 0, 0, width, height
if 'crop' in pos:
x0 = min(max(pos['crop'].get('left', x0), 0), width)
y0 = min(max(pos['crop'].get('top', y0), 0), height)
x1 = min(max(pos['crop'].get('right', x1), x0), width)
y1 = min(max(pos['crop'].get('bottom', y1), y0), height)
bbox['crop'] = {'left': x0, 'top': y0, 'right': x1, 'bottom': y1}
corners = np.array([[x0, y0, 1], [x1, y0, 1], [x0, y1, 1], [x1, y1, 1]])
m = np.identity(3)
m[0][0] = pos.get('s11', 1) * pos.get('scale', 1)
m[0][1] = pos.get('s12', 0) * pos.get('scale', 1)
m[0][2] = pos.get('x', 0)
m[1][0] = pos.get('s21', 0) * pos.get('scale', 1)
m[1][1] = pos.get('s22', 1) * pos.get('scale', 1)
m[1][2] = pos.get('y', 0)
if not np.array_equal(m, np.identity(3)):
bbox['transform'] = m
try:
bbox['inverse'] = np.linalg.inv(m)
except np.linalg.LinAlgError:
msg = 'The position for a source is not invertable (%r)'
raise TileSourceError(msg, pos)
transcorners = np.dot(m, corners.T)
bbox['left'] = min(transcorners[0])
bbox['top'] = min(transcorners[1])
bbox['right'] = max(transcorners[0])
bbox['bottom'] = max(transcorners[1])
return bbox
def _axisKey(self, source, value, key):
"""
Get the value for a particular axis given the source specification.
:param source: a source specification.
:param value: a default or initial value.
:param key: the axis key. One of frame, c, z, t, xy.
:returns: the axis key (an integer).
"""
if source.get('%sSet' % key) is not None:
return source.get('%sSet' % key)
vals = source.get('%sValues' % key) or []
if not vals:
axisKey = value + source.get(key, 0)
elif len(vals) == 1:
axisKey = vals[0] + value + source.get(key, 0)
elif value < len(vals):
axisKey = vals[value] + source.get(key, 0)
else:
axisKey = (vals[len(vals) - 1] + (vals[len(vals) - 1] - vals[len(vals) - 2]) *
(value - len(vals) + source.get(key, 0)))
return axisKey
def _adjustFramesAsAxes(self, frames, idx, framesAsAxes):
"""
Given a dictionary of axes and strides, relabel the indices in a frame
as if it was based on those strides.
:param frames: a list of frames from the tile source.
:param idx: 0-based index of the frame to adjust.
:param framesAsAxes: dictionary of axes and strides to apply.
:returns: the adjusted frame record.
"""
axisRange = {}
slen = len(frames)
check = 1
for stride, axis in sorted([[v, k] for k, v in framesAsAxes.items()], reverse=True):
axisRange[axis] = slen // stride
slen = stride
check *= axisRange[axis]
if check != len(frames) and not hasattr(self, '_warnedAdjustFramesAsAxes'):
self.logger.warning('framesAsAxes strides do not use all frames.')
self._warnedAdjustFramesAsAxes = True
frame = frames[idx].copy()
for axis in self._axesList:
frame.pop('Index' + axis.upper(), None)
for axis, stride in framesAsAxes.items():
frame['Index' + axis.upper()] = (idx // stride) % axisRange[axis]
return frame
def _addSourceToFrames(self, tsMeta, source, sourceIdx, frameDict):
"""
Add a source to the all appropriate frames.
:param tsMeta: metadata from the source or from a matching uniform
source.
:param source: the source record.
:param sourceIdx: the index of the source.
:param frameDict: a dictionary to log the found frames.
"""
frames = tsMeta.get('frames', [{'Frame': 0, 'Index': 0}])
# Channel names
channels = tsMeta.get('channels', [])
if source.get('channels'):
channels[:len(source['channels'])] = source['channels']
elif source.get('channel'):
channels[:1] = [source['channel']]
if len(channels) > len(self._channels):
self._channels += channels[len(self._channels):]
if not any(key in source for key in {
'frame', 'frameValues'} |
set(self._axesList) |
{f'{axis}Values' for axis in self._axesList}):
source = source.copy()
if len(frameDict['byFrame']):
source['frame'] = max(frameDict['byFrame'].keys()) + 1
if len(frameDict['byAxes']):
source['z'] = max(
aKey[self._axesList.index('z')] for aKey in frameDict['byAxes']) + 1
for frameIdx, frame in enumerate(frames):
if 'frames' in source and frameIdx not in source['frames']:
continue
if source.get('framesAsAxes'):
frame = self._adjustFramesAsAxes(frames, frameIdx, source.get('framesAsAxes'))
fKey = self._axisKey(source, frameIdx, 'frame')
cIdx = frame.get('IndexC', 0)
aKey = tuple(self._axisKey(source, frame.get(f'Index{axis.upper()}') or 0, axis)
for axis in self._axesList)
channel = channels[cIdx] if cIdx < len(channels) else None
# We add the channel name to our channel list if the individual
# source lists the channel name or a set of channels OR the source
# appends channels to an existing set.
if channel and channel not in self._channels and (
'channel' in source or 'channels' in source or
len(self._channels) == aKey[0]):
self._channels.append(channel)
# Adjust the channel number if the source named the channel; do not
# do so in other cases
if (channel and channel in self._channels and
'c' not in source and 'cValues' not in source):
aKey = tuple([self._channels.index(channel)] + list(aKey[1:]))
kwargs = source.get('params', {}).copy()
if 'style' in source:
kwargs['style'] = source['style']
kwargs.pop('frame', None)
kwargs.pop('encoding', None)
frameDict['byFrame'].setdefault(fKey, [])
frameDict['byFrame'][fKey].append({
'sourcenum': sourceIdx,
'frame': frameIdx,
'kwargs': kwargs,
})
frameDict['axesAllowed'] = (frameDict['axesAllowed'] and (
len(frames) <= 1 or 'IndexRange' in tsMeta)) or aKey != tuple([0] * len(aKey))
frameDict['byAxes'].setdefault(aKey, [])
frameDict['byAxes'][aKey].append({
'sourcenum': sourceIdx,
'frame': frameIdx,
'kwargs': kwargs,
})
def _frameDictToFrames(self, frameDict):
"""
Given a frame dictionary, populate a frame list.
:param frameDict: a dictionary with known frames stored in byAxes if
axesAllowed is True or byFrame if it is False.
:returns: a list of frames with enough information to generate them.
"""
frames = []
if not frameDict['axesAllowed']:
frameCount = max(frameDict['byFrame']) + 1
for frameIdx in range(frameCount):
frame = {'sources': frameDict['byFrame'].get(frameIdx, [])}
frames.append(frame)
else:
axesCount = [max(aKey[idx] for aKey in frameDict['byAxes']) + 1
for idx in range(len(self._axesList))]
for aKey in itertools.product(*[range(count) for count in axesCount][::-1]):
aKey = tuple(aKey[::-1])
frame = {
'sources': frameDict['byAxes'].get(aKey, []),
}
for idx, axis in enumerate(self._axesList):
if axesCount[idx] > 1:
frame[f'Index{axis.upper()}'] = aKey[idx]
frames.append(frame)
return frames
def _collectFrames(self):
"""
Using the specification in _info, enumerate the source files and open
at least the first two of them to build up the frame specifications.
"""
self._sources = sources = self._resolveFramePaths(self._info['sources'])
self.logger.debug('Sources: %r', sources)
frameDict = {'byFrame': {}, 'byAxes': {}, 'axesAllowed': True}
numChecked = 0
self._associatedImages = {}
self._sourcePaths = {}
self._channels = self._info.get('channels') or []
absLargeImagePath = os.path.abspath(self._largeImagePath)
computedWidth = computedHeight = 0
self.tileWidth = self._info.get('tileWidth')
self.tileHeight = self._info.get('tileHeight')
self._nativeMagnification = {
'mm_x': self._info.get('scale', {}).get('mm_x') or None,
'mm_y': self._info.get('scale', {}).get('mm_y') or None,
'magnification': self._info.get('scale', {}).get('magnification') or None,
}
# Walk through the sources, opening at least the first two, and
# construct a frame list. Each frame is a list of sources that affect
# it along with the frame number from that source.
lastSource = None
bandCount = 0
for sourceIdx, source in enumerate(sources):
path = source['path']
if os.path.abspath(path) == absLargeImagePath:
msg = 'Multi source specification is self-referential'
raise TileSourceError(msg)
similar = False
if (lastSource and source['path'] == lastSource['path'] and
source.get('params') == lastSource.get('params')):
similar = True
if not similar and (numChecked < 2 or not self._info.get('uniformSources')):
# need kwargs of frame, style?
ts = self._openSource(source)
self.tileWidth = self.tileWidth or ts.tileWidth
self.tileHeight = self.tileHeight or ts.tileHeight
if not hasattr(self, '_firstdtype'):
self._firstdtype = (
ts.dtype if not self._info.get('dtype') else
np.dtype(self._info['dtype']))
if self._info.get('dtype'):
self._dtype = np.dtype(self._info['dtype'])
if not numChecked:
tsMag = ts.getNativeMagnification()
for key in self._nativeMagnification:
self._nativeMagnification[key] = (
self._nativeMagnification[key] or tsMag.get(key))
numChecked += 1
tsMeta = ts.getMetadata()
bandCount = max(bandCount, ts.bandCount or 0)
if 'bands' in tsMeta and self._info.get('singleBand') is not True:
if not hasattr(self, '_bands'):
self._bands = {}
self._bands.update(tsMeta['bands'])
lastSource = source
self._bandCount = 1 if self._info.get('singleBand') else (
len(self._bands) if hasattr(self, '_bands') else (bandCount or None))
bbox = self._sourceBoundingBox(source, tsMeta['sizeX'], tsMeta['sizeY'])
computedWidth = max(computedWidth, int(math.ceil(bbox['right'])))
computedHeight = max(computedHeight, int(math.ceil(bbox['bottom'])))
# Record this path
if path not in self._sourcePaths:
self._sourcePaths[path] = {
'frames': set(),
'sourcenum': set(),
}
# collect associated images
for basekey in ts.getAssociatedImagesList():
key = basekey
keyidx = 0
while key in self._associatedImages:
keyidx += 1
key = '%s-%d' % (basekey, keyidx)
self._associatedImages[key] = {
'sourcenum': sourceIdx,
'key': key,
}
source['metadata'] = tsMeta
source['bbox'] = bbox
self._sourcePaths[path]['sourcenum'].add(sourceIdx)
# process metadata to determine what frames are used, etc.
self._addSourceToFrames(tsMeta, source, sourceIdx, frameDict)
# Check frameDict and create frame record
self._frames = self._frameDictToFrames(frameDict)
self.tileWidth = min(max(self.tileWidth, self._minTileSize), self._maxTileSize)
self.tileHeight = min(max(self.tileHeight, self._minTileSize), self._maxTileSize)
self.sizeX = self._info.get('width') or computedWidth
self.sizeY = self._info.get('height') or computedHeight
self.levels = int(max(1, math.ceil(math.log(
max(self.sizeX / self.tileWidth, self.sizeY / self.tileHeight)) / math.log(2)) + 1))
[docs]
def getNativeMagnification(self):
"""
Get the magnification at a particular level.
:return: magnification, width of a pixel in mm, height of a pixel in mm.
"""
return self._nativeMagnification.copy()
def _openSource(self, source, params=None):
"""
Open a tile source, possibly using a specific source.
:param source: a dictionary with path, params, and possibly sourceName.
:param params: a dictionary of parameters to pass to the open call.
:returns: a tile source.
"""
with self._lastOpenSourceLock:
if (hasattr(self, '_lastOpenSource') and
self._lastOpenSource['source'] == source and
(self._lastOpenSource['params'] == params or (
params == {} and self._lastOpenSource['params'] is None))):
return self._lastOpenSource['ts']
if not len(large_image.tilesource.AvailableTileSources):
large_image.tilesource.loadTileSources()
if ('sourceName' not in source or
source['sourceName'] not in large_image.tilesource.AvailableTileSources):
openFunc = large_image.open
else:
openFunc = large_image.tilesource.AvailableTileSources[source['sourceName']]
origParams = params
if params is None:
params = source.get('params', {})
ts = openFunc(source['path'], **params)
if (self._dtype and np.dtype(ts.dtype).kind == 'f' and
(self._dtype == 'check' or np.dtype(self._dtype).kind != 'f') and
'sampleScale' not in source and 'sampleOffset' not in source):
minval = maxval = 0
for f in range(ts.frames):
ftile = ts.getTile(x=0, y=0, z=0, frame=f, numpyAllowed='always')
minval = min(minval, np.amin(ftile))
maxval = max(maxval, np.amax(ftile))
if minval >= 0 and maxval <= 1:
source['sampleScale'] = None
elif minval >= 0:
source['sampleScale'] = 2 ** math.ceil(math.log2(maxval))
else:
source['sampleScale'] = 2 ** math.ceil(math.log2(max(-minval, maxval)) + 1)
source['sampleOffset'] = source['sampleScale'] / 2
source['sourceName'] = ts.name
with self._lastOpenSourceLock:
self._lastOpenSource = {
'source': source,
'params': origParams,
'ts': ts,
}
return ts
[docs]
def getAssociatedImage(self, imageKey, *args, **kwargs):
"""
Return an associated image.
:param imageKey: the key of the associated image to retrieve.
:param kwargs: optional arguments. Some options are width, height,
encoding, jpegQuality, jpegSubsampling, and tiffCompression.
:returns: imageData, imageMime: the image data and the mime type, or
None if the associated image doesn't exist.
"""
if imageKey not in self._associatedImages:
return
source = self._sources[self._associatedImages[imageKey]['sourcenum']]
ts = self._openSource(source)
return ts.getAssociatedImage(self._associatedImages[imageKey]['key'], *args, **kwargs)
[docs]
def getAssociatedImagesList(self):
"""
Return a list of associated images.
:return: the list of image keys.
"""
return sorted(self._associatedImages.keys())
def _mergeTiles(self, base, tile, x, y):
"""
Add a tile to an existing tile. The existing tile is expanded as
needed, and the number of channels will always be the greater of the
two.
:param base: numpy array base tile. May be None. May be modified.
:param tile: numpy tile to add.
:param x: location to add the tile.
:param y: location to add the tile.
:returns: a numpy tile.
"""
# Replace non blank pixels, aggregating opacity appropriately
x = int(round(x))
y = int(round(y))
if base is None and not x and not y:
return tile
if base is None:
base = np.zeros((0, 0, tile.shape[2]), dtype=tile.dtype)
base, tile = _makeSameChannelDepth(base, tile)
if base.shape[0] < tile.shape[0] + y:
vfill = np.zeros(
(tile.shape[0] + y - base.shape[0], base.shape[1], base.shape[2]),
dtype=base.dtype)
if base.shape[2] in {2, 4}:
vfill[:, :, -1] = fullAlphaValue(base.dtype)
base = np.vstack((base, vfill))
if base.shape[1] < tile.shape[1] + x:
hfill = np.zeros(
(base.shape[0], tile.shape[1] + x - base.shape[1], base.shape[2]),
dtype=base.dtype)
if base.shape[2] in {2, 4}:
hfill[:, :, -1] = fullAlphaValue(base.dtype)
base = np.hstack((base, hfill))
if base.flags.writeable is False:
base = base.copy()
if base.shape[2] in {2, 4}:
baseA = base[y:y + tile.shape[0], x:x + tile.shape[1], -1].astype(
float) / fullAlphaValue(base.dtype)
tileA = tile[:, :, -1].astype(float) / fullAlphaValue(tile.dtype)
outA = tileA + baseA * (1 - tileA)
base[y:y + tile.shape[0], x:x + tile.shape[1], :-1] = (
np.where(tileA[..., np.newaxis], tile[:, :, :-1] * tileA[..., np.newaxis], 0) +
base[y:y + tile.shape[0], x:x + tile.shape[1], :-1] * baseA[..., np.newaxis] *
(1 - tileA[..., np.newaxis])
) / np.where(outA[..., np.newaxis], outA[..., np.newaxis], 1)
base[y:y + tile.shape[0], x:x + tile.shape[1], -1] = outA * fullAlphaValue(base.dtype)
else:
base[y:y + tile.shape[0], x:x + tile.shape[1], :] = tile
return base
def _getTransformedTile(self, ts, transform, corners, scale, frame, crop=None):
"""
Determine where the target tile's corners are located on the source.
Fetch that so that we have at least sqrt(2) more resolution, then use
scikit-image warp to transform it. scikit-image does a better and
faster job than scipy.ndimage.affine_transform.
:param ts: the source of the image to transform.
:param transform: a 3x3 affine 2d matrix for transforming the source
image at full resolution to the target tile at full resolution.
:param corners: corners of the destination in full res coordinates.
corner 0 must be the upper left, 2 must be the lower right.
:param scale: scaling factor from full res to the target resolution.
:param frame: frame number of the source image.
:param crop: an optional dictionary to crop the source image in full
resolution, untransformed coordinates. This may contain left, top,
right, and bottom values in pixels.
:returns: a numpy array tile or None, x, y coordinates within the
target tile for the placement of the numpy tile array.
"""
try:
import skimage.transform
except ImportError:
msg = 'scikit-image is required for affine transforms.'
raise TileSourceError(msg)
# From full res source to full res destination
transform = transform.copy() if transform is not None else np.identity(3)
# Scale dest corners to actual size; adjust transform for the same
corners = np.array(corners)
corners[:, :2] //= scale
transform[:2, :] /= scale
# Offset so our target is the actual destination array we use
transform[0][2] -= corners[0][0]
transform[1][2] -= corners[0][1]
corners[:, :2] -= corners[0, :2]
outw, outh = corners[2][0], corners[2][1]
if not outh or not outw:
return None, 0, 0
srccorners = np.dot(np.linalg.inv(transform), np.array(corners).T).T.tolist()
minx = min(c[0] for c in srccorners)
maxx = max(c[0] for c in srccorners)
miny = min(c[1] for c in srccorners)
maxy = max(c[1] for c in srccorners)
srcscale = max((maxx - minx) / outw, (maxy - miny) / outh)
# we only need every 1/srcscale pixel.
srcscale = int(2 ** math.log2(max(1, srcscale)))
# Pad to reduce edge effects at tile boundaries
border = int(math.ceil(4 * srcscale))
region = {
'left': int(max(0, minx - border) // srcscale) * srcscale,
'top': int(max(0, miny - border) // srcscale) * srcscale,
'right': int((min(ts.sizeX, maxx + border) + srcscale - 1) // srcscale) * srcscale,
'bottom': int((min(ts.sizeY, maxy + border) + srcscale - 1) // srcscale) * srcscale,
}
if crop:
region['left'] = max(region['left'], crop.get('left', region['left']))
region['top'] = max(region['top'], crop.get('top', region['top']))
region['right'] = min(region['right'], crop.get('right', region['right']))
region['bottom'] = min(region['bottom'], crop.get('bottom', region['bottom']))
output = {
'maxWidth': (region['right'] - region['left']) // srcscale,
'maxHeight': (region['bottom'] - region['top']) // srcscale,
}
if output['maxWidth'] <= 0 or output['maxHeight'] <= 0:
return None, 0, 0
srcImage, _ = ts.getRegion(
region=region, output=output, frame=frame, resample=None,
format=TILE_FORMAT_NUMPY)
# This is the region we actually took in our source coordinates, scaled
# for if we took a low res version
regioncorners = np.array([
[region['left'] // srcscale, region['top'] // srcscale, 1],
[region['right'] // srcscale, region['top'] // srcscale, 1],
[region['right'] // srcscale, region['bottom'] // srcscale, 1],
[region['left'] // srcscale, region['bottom'] // srcscale, 1]], dtype=float)
# adjust our transform if we took a low res version of the source
transform[:2, :2] *= srcscale
# Find where the source corners land on the destination.
preshiftcorners = (np.dot(transform, regioncorners.T).T).tolist()
regioncorners[:, :2] -= regioncorners[0, :2]
destcorners = (np.dot(transform, regioncorners.T).T).tolist()
offsetx, offsety = None, None
for idx in range(4):
if offsetx is None or destcorners[idx][0] < offsetx:
x = preshiftcorners[idx][0]
offsetx = destcorners[idx][0] - (x - math.floor(x))
if offsety is None or destcorners[idx][1] < offsety:
y = preshiftcorners[idx][1]
offsety = destcorners[idx][1] - (y - math.floor(y))
transform[0][2] -= offsetx
transform[1][2] -= offsety
x, y = int(math.floor(x)), int(math.floor(y))
# Recompute where the source corners will land
destcorners = (np.dot(transform, regioncorners.T).T).tolist()
destShape = [
max(max(math.ceil(c[1]) for c in destcorners), srcImage.shape[0]),
max(max(math.ceil(c[0]) for c in destcorners), srcImage.shape[1]),
]
if max(0, -x) or max(0, -y):
transform[0][2] -= max(0, -x)
transform[1][2] -= max(0, -y)
destShape[0] -= max(0, -y)
destShape[1] -= max(0, -x)
x += max(0, -x)
y += max(0, -y)
destShape = [min(destShape[0], outh - y), min(destShape[1], outw - x)]
if destShape[0] <= 0 or destShape[1] <= 0:
return None, None, None
# Add an alpha band if needed
if srcImage.shape[2] in {1, 3}:
_, srcImage = _makeSameChannelDepth(np.zeros((1, 1, srcImage.shape[2] + 1)), srcImage)
# skimage.transform.warp is faster and has less artifacts than
# scipy.ndimage.affine_transform. It is faster than using cupy's
# version of scipy's affine_transform when the source and destination
# images are converted from numpy to cupy and back in this method.
destImage = skimage.transform.warp(
# Although using np.float32 could reduce memory use, it doesn't
# provide any speed improvement
srcImage.astype(float),
skimage.transform.AffineTransform(np.linalg.inv(transform)),
order=3,
output_shape=(destShape[0], destShape[1], srcImage.shape[2]),
).astype(srcImage.dtype)
return destImage, x, y
def _addSourceToTile(self, tile, sourceEntry, corners, scale):
"""
Add a source to the current tile.
:param tile: a numpy array with the tile, or None if there is no data
yet.
:param sourceEntry: the current record from the sourceList. This
contains the sourcenum, kwargs to apply when opening the source,
and the frame within the source to fetch.
:param corners: the four corners of the tile in the main image space
coordinates.
:param scale: power of 2 scale of the output; this is the number of
pixels that are conceptually aggregated from the source for one
output pixel.
:returns: a numpy array of the tile.
"""
source = self._sources[sourceEntry['sourcenum']]
# If tile is outside of bounding box, skip it
bbox = source['bbox']
if (corners[2][0] <= bbox['left'] or corners[0][0] >= bbox['right'] or
corners[2][1] <= bbox['top'] or corners[0][1] >= bbox['bottom']):
return tile
ts = self._openSource(source, sourceEntry['kwargs'])
transform = bbox.get('transform')
x = y = 0
# If there is no transform or the diagonals are positive and there is
# no sheer and integer pixel alignment, use getRegion with an
# appropriate size
scaleX = transform[0][0] if transform is not None else 1
scaleY = transform[1][1] if transform is not None else 1
if ((transform is None or (
transform[0][0] > 0 and transform[0][1] == 0 and
transform[1][0] == 0 and transform[1][1] > 0 and
transform[0][2] % scaleX == 0 and transform[1][2] % scaleY == 0)) and
((scaleX % scale) == 0 or math.log(scaleX, 2).is_integer()) and
((scaleY % scale) == 0 or math.log(scaleY, 2).is_integer())):
srccorners = (
list(np.dot(bbox['inverse'], np.array(corners).T).T)
if transform is not None else corners)
region = {
'left': srccorners[0][0], 'top': srccorners[0][1],
'right': srccorners[2][0], 'bottom': srccorners[2][1],
}
output = {
'maxWidth': (corners[2][0] - corners[0][0]) // scale,
'maxHeight': (corners[2][1] - corners[0][1]) // scale,
}
if region['left'] < 0:
x -= region['left'] * scaleX // scale
output['maxWidth'] += int(region['left'] * scaleX // scale)
region['left'] = 0
if region['top'] < 0:
y -= region['top'] * scaleY // scale
output['maxHeight'] += int(region['top'] * scaleY // scale)
region['top'] = 0
if region['right'] > source['metadata']['sizeX']:
output['maxWidth'] -= int(
(region['right'] - source['metadata']['sizeX']) * scaleX // scale)
region['right'] = source['metadata']['sizeX']
if region['bottom'] > source['metadata']['sizeY']:
output['maxHeight'] -= int(
(region['bottom'] - source['metadata']['sizeY']) * scaleY // scale)
region['bottom'] = source['metadata']['sizeY']
for key in region:
region[key] = int(round(region[key]))
self.logger.debug('getRegion: ts: %r, region: %r, output: %r', ts, region, output)
sourceTile, _ = ts.getRegion(
region=region, output=output, frame=sourceEntry.get('frame', 0),
resample=None, format=TILE_FORMAT_NUMPY)
else:
sourceTile, x, y = self._getTransformedTile(
ts, transform, corners, scale, sourceEntry.get('frame', 0),
source.get('position', {}).get('crop'))
if sourceTile is not None and all(dim > 0 for dim in sourceTile.shape):
targetDtype = np.dtype(self._info.get('dtype', ts.dtype))
changeDtype = sourceTile.dtype != targetDtype
if source.get('sampleScale') or source.get('sampleOffset'):
sourceTile = sourceTile.astype(float)
if source.get('sampleOffset'):
sourceTile[:, :, :-1] += source['sampleOffset']
if source.get('sampleScale') and source.get('sampleScale') != 1:
sourceTile[:, :, :-1] /= source['sampleScale']
if sourceTile.dtype != targetDtype:
if changeDtype:
sourceTile = (
sourceTile.astype(float) * fullAlphaValue(targetDtype) /
fullAlphaValue(sourceTile))
sourceTile = sourceTile.astype(targetDtype)
tile = self._mergeTiles(tile, sourceTile, x, y)
return tile
[docs]
@methodcache()
def getTile(self, x, y, z, pilImageAllowed=False, numpyAllowed=False, **kwargs):
frame = self._getFrame(**kwargs)
self._xyzInRange(x, y, z, frame, len(self._frames) if hasattr(self, '_frames') else None)
scale = 2 ** (self.levels - 1 - z)
corners = [[
x * self.tileWidth * scale,
y * self.tileHeight * scale,
1,
], [
min((x + 1) * self.tileWidth * scale, self.sizeX),
y * self.tileHeight * scale,
1,
], [
min((x + 1) * self.tileWidth * scale, self.sizeX),
min((y + 1) * self.tileHeight * scale, self.sizeY),
1,
], [
x * self.tileWidth * scale,
min((y + 1) * self.tileHeight * scale, self.sizeY),
1,
]]
sourceList = self._frames[frame]['sources']
tile = None
# If the first source does not completely cover the output tile or uses
# a transformation, create a tile that is the desired size and fill it
# with the background color.
fill = not len(sourceList)
if not fill:
firstsource = self._sources[sourceList[0]['sourcenum']]
fill = 'transform' in firstsource['bbox'] or any(
cx < firstsource['bbox']['left'] or
cx > firstsource['bbox']['right'] or
cy < firstsource['bbox']['top'] or
cy > firstsource['bbox']['bottom'] for cx, cy, _ in corners)
if fill:
colors = self._info.get('backgroundColor')
if colors:
tile = np.full((self.tileHeight, self.tileWidth, len(colors)),
colors,
dtype=getattr(self, '_firstdtype', np.uint8))
# Add each source to the tile
for sourceEntry in sourceList:
tile = self._addSourceToTile(tile, sourceEntry, corners, scale)
if tile is None:
# TODO number of channels?
colors = self._info.get('backgroundColor', [0])
if colors:
tile = np.full((self.tileHeight, self.tileWidth, len(colors)),
colors,
dtype=getattr(self, '_firstdtype', np.uint8))
if self._info.get('singleBand'):
tile = tile[:, :, :1]
elif tile.shape[2] in {2, 4} and (self._bandCount or tile.shape[2]) < tile.shape[2]:
# remove a needless alpha channel
if np.all(tile[:, :, -1] == fullAlphaValue(tile)):
tile = tile[:, :, :-1]
if self._bandCount and tile.shape[2] < self._bandCount:
_, tile = _makeSameChannelDepth(np.zeros((1, 1, self._bandCount)), tile)
# We should always have a tile
return self._outputTile(tile, TILE_FORMAT_NUMPY, x, y, z,
pilImageAllowed, numpyAllowed, **kwargs)
[docs]
def open(*args, **kwargs):
"""
Create an instance of the module class.
"""
return MultiFileTileSource(*args, **kwargs)
[docs]
def canRead(*args, **kwargs):
"""
Check if an input can be read by the module class.
"""
return MultiFileTileSource.canRead(*args, **kwargs)