Source code for large_image_source_multi

import builtins
import copy
import itertools
import json
import math
import os
import re
import threading
from importlib.metadata import PackageNotFoundError
from importlib.metadata import version as _importlib_version
from pathlib import Path

import numpy as np
import yaml

import large_image
from large_image.cache_util import LruCacheMetaclass, methodcache
from large_image.constants import TILE_FORMAT_NUMPY, SourcePriority
from large_image.exceptions import TileSourceError, TileSourceFileNotFoundError
from large_image.tilesource import FileTileSource
from large_image.tilesource.utilities import _makeSameChannelDepth, fullAlphaValue

try:
    __version__ = _importlib_version(__name__)
except PackageNotFoundError:
    # package is not installed
    pass

jsonschema = None
_validator = None


def _lazyImport():
    """
    Import the jsonschema module.  This is done when needed rather than in the
    module initialization because it is slow.
    """
    global jsonschema, _validator

    if jsonschema is None:
        try:
            import jsonschema

            _validator = jsonschema.Draft6Validator(MultiSourceSchema)
        except ImportError:
            msg = 'jsonschema module not found.'
            raise TileSourceError(msg)


SourceEntrySchema = {
    'type': 'object',
    'additionalProperties': True,
    'properties': {
        'name': {'type': 'string'},
        'description': {'type': 'string'},
        'path': {
            'decription':
                'The relative path, including file name if pathPattern is not '
                'specified.  The relative path excluding file name if '
                'pathPattern is specified.  Or, girder://id for Girder '
                'sources.  If a specific tile source is specified that does '
                'not need an actual path, the special value of `__none__` can '
                'be used to bypass checking for an actual file.',
            'type': 'string',
        },
        'pathPattern': {
            'description':
                'If specified, file names in the path are matched to this '
                'regular expression, sorted in C-sort order.  This can '
                'populate other properties via named expressions, e.g., '
                'base_(?<xy>\\d+).png.  Add 1 to the name for 1-based '
                'numerical values.',
            'type': 'string',
        },
        'sourceName': {
            'description':
                'Require a specific source by name.  This is one of the '
                'large_image source names (e.g., this one is "multi".',
            'type': 'string',
        },
        # 'projection': {
        #     'description':
        #         'If specified, the source is treated as non-geospatial and '
        #         'then a projection is added.  Set to None/null to use its '
        #         'own projection if a overall projection was specified.',
        #     'type': 'string',
        # },
        # corner points in the projection?
        'frame': {
            'description':
                'Base value for all frames; only use this if the data does '
                'not conceptually have z, t, xy, or c arrangement.',
            'type': 'integer',
            'minimum': 0,
        },
        'z': {
            'description': 'Base value for all frames',
            'type': 'integer',
            'minimum': 0,
        },
        't': {
            'description': 'Base value for all frames',
            'type': 'integer',
            'minimum': 0,
        },
        'xy': {
            'description': 'Base value for all frames',
            'type': 'integer',
            'minimum': 0,
        },
        'c': {
            'description': 'Base value for all frames',
            'type': 'integer',
            'minimum': 0,
        },
        'zSet': {
            'description': 'Override value for frame',
            'type': 'integer',
            'minimum': 0,
        },
        'tSet': {
            'description': 'Override value for frame',
            'type': 'integer',
            'minimum': 0,
        },
        'xySet': {
            'description': 'Override value for frame',
            'type': 'integer',
            'minimum': 0,
        },
        'cSet': {
            'description': 'Override value for frame',
            'type': 'integer',
            'minimum': 0,
        },
        'zValues': {
            'description':
                'The numerical z position of the different z indices of the '
                'source.  If only one value is specified, other indices are '
                'shifted based on the source.  If fewer values are given than '
                'z indices, the last two value given imply a stride for the '
                'remainder.',
            'type': 'array',
            'items': {'type': 'number'},
            'minItems': 1,
        },
        'tValues': {
            'description':
                'The numerical t position of the different t indices of the '
                'source.  If only one value is specified, other indices are '
                'shifted based on the source.  If fewer values are given than '
                't indices, the last two value given imply a stride for the '
                'remainder.',
            'type': 'array',
            'items': {'type': 'number'},
            'minItems': 1,
        },
        'xyValues': {
            'description':
                'The numerical xy position of the different xy indices of the '
                'source.  If only one value is specified, other indices are '
                'shifted based on the source.  If fewer values are given than '
                'xy indices, the last two value given imply a stride for the '
                'remainder.',
            'type': 'array',
            'items': {'type': 'number'},
            'minItems': 1,
        },
        'cValues': {
            'description':
                'The numerical c position of the different c indices of the '
                'source.  If only one value is specified, other indices are '
                'shifted based on the source.  If fewer values are given than '
                'c indices, the last two value given imply a stride for the '
                'remainder.',
            'type': 'array',
            'items': {'type': 'number'},
            'minItems': 1,
        },
        'frameValues': {
            'description':
                'The numerical frame position of the different frame indices '
                'of the source.  If only one value is specified, other '
                'indices are shifted based on the source.  If fewer values '
                'are given than frame indices, the last two value given imply '
                'a stride for the remainder.',
            'type': 'array',
            'items': {'type': 'number'},
            'minItems': 1,
        },
        'channel': {
            'description':
                'A channel name to correspond with the main image.  Ignored '
                'if c, cValues, or channels is specified.',
            'type': 'string',
        },
        'channels': {
            'description':
                'A list of channel names used to correspond channels in this '
                'source with the main image.  Ignored if c or cValues is '
                'specified.',
            'type': 'array',
            'items': {'type': 'string'},
            'minItems': 1,
        },
        'zStep': {
            'description':
                'Step value for multiple files included via pathPattern.  '
                'Applies to z or zValues',
            'type': 'integer',
            'exclusiveMinimum': 0,
        },
        'tStep': {
            'description':
                'Step value for multiple files included via pathPattern.  '
                'Applies to t or tValues',
            'type': 'integer',
            'exclusiveMinimum': 0,
        },
        'xyStep': {
            'description':
                'Step value for multiple files included via pathPattern.  '
                'Applies to x or xyValues',
            'type': 'integer',
            'exclusiveMinimum': 0,
        },
        'xStep': {
            'description':
                'Step value for multiple files included via pathPattern.  '
                'Applies to c or cValues',
            'type': 'integer',
            'exclusiveMinimum': 0,
        },
        'framesAsAxes': {
            'description':
                'An object with keys as axes and values as strides to '
                'interpret the source frames.  This overrides the internal '
                'metadata for frames.',
            'type': 'object',
            'patternProperties': {
                '^(c|t|z|xy)$': {
                    'type': 'integer',
                    'exclusiveMinimum': 0,
                },
            },
            'additionalProperties': False,
        },
        'position': {
            'type': 'object',
            'additionalProperties': False,
            'description':
                'The image can be translated with x, y offset, apply an '
                'affine transform, and scaled.  If only part of the source is '
                'desired, a crop can be applied before the transformation.',
            'properties': {
                'x': {'type': 'number'},
                'y': {'type': 'number'},
                'crop': {
                    'description':
                        'Crop the source before applying a '
                        'position transform',
                    'type': 'object',
                    'additionalProperties': False,
                    'properties': {
                        'left': {'type': 'integer'},
                        'top': {'type': 'integer'},
                        'right': {'type': 'integer'},
                        'bottom': {'type': 'integer'},
                    },
                    # TODO: Add polygon option
                    # TODO: Add postTransform option
                },
                'scale': {
                    'description':
                        'Values less than 1 will downsample the source.  '
                        'Values greater than 1 will upsample it.',
                    'type': 'number',
                    'exclusiveMinimum': 0,
                },
                's11': {'type': 'number'},
                's12': {'type': 'number'},
                's21': {'type': 'number'},
                's22': {'type': 'number'},
            },
        },
        'frames': {
            'description': 'List of frames to use from source',
            'type': 'array',
            'items': {'type': 'integer'},
        },
        'sampleScale': {
            'description':
                'Each pixel sample values is divided by this scale after any '
                'sampleOffset has been applied',
            'type': 'number',
        },
        'sampleOffset': {
            'description':
                'This is added to each pixel sample value before any '
                'sampleScale is applied',
            'type': 'number',
        },
        'style': {
            'description': 'A style specification to pass to the base tile source',
            'type': 'object',
        },
        'params': {
            'description': 'Additional parameters to pass to the base tile source',
            'type': 'object',
        },
    },
    'required': [
        'path',
    ],
}

MultiSourceSchema = {
    '$schema': 'http://json-schema.org/schema#',
    'type': 'object',
    'additionalProperties': False,
    'properties': {
        'name': {'type': 'string'},
        'description': {'type': 'string'},
        'width': {'type': 'integer', 'exclusiveMinimum': 0},
        'height': {'type': 'integer', 'exclusiveMinimum': 0},
        'tileWidth': {'type': 'integer', 'exclusiveMinimum': 0},
        'tileHeight': {'type': 'integer', 'exclusiveMinimum': 0},
        'channels': {
            'description': 'A list of channel names',
            'type': 'array',
            'items': {'type': 'string'},
            'minItems': 1,
        },
        'scale': {
            'type': 'object',
            'additionalProperties': False,
            'properties': {
                'mm_x': {'type': 'number', 'exclusiveMinimum': 0},
                'mm_y': {'type': 'number', 'exclusiveMinimum': 0},
                'magnification': {'type': 'integer', 'exclusiveMinimum': 0},
            },
        },
        # 'projection': {
        #     'description': 'If specified, sources are treated as '
        #                    'non-geospatial and then this projection is added',
        #     'type': 'string',
        # },
        # corner points in the projection?
        'backgroundColor': {
            'description': 'A list of background color values (fill color) in '
                           'the same scale and band order as the first tile '
                           'source (e.g., white might be [255, 255, 255] for '
                           'a three channel image).',
            'type': 'array',
            'items': {'type': 'number'},
        },
        'basePath': {
            'decription':
                'A relative path that is used as a base for all paths in '
                'sources.  Defaults to the directory of the main file.',
            'type': 'string',
        },
        'uniformSources': {
            'description':
                'If true and the first two sources are similar in frame '
                'layout and size, assume all sources are so similar',
            'type': 'boolean',
        },
        'dtype': {
            'description': 'If present, a numpy dtype name to use for the data.',
            'type': 'string',
        },
        'singleBand': {
            'description':
                'If true, output only the first band of compositied results',
            'type': 'boolean',
        },
        'axes': {
            'description': 'A list of additional axes that will be parsed.  '
                           'The default axes are z, t, xy, and c.  It is '
                           'recommended that additional axes use terse names '
                           'and avoid x, y, and s.',
            'type': 'array',
            'items': {'type': 'string'},
        },
        'sources': {
            'type': 'array',
            'items': SourceEntrySchema,
        },
        # TODO: add merge method for cases where the are pixels from multiple
        # sources in the same output location.
    },
    'required': [
        'sources',
    ],
}


[docs] class MultiFileTileSource(FileTileSource, metaclass=LruCacheMetaclass): """ Provides tile access to a composite of other tile sources. """ cacheName = 'tilesource' name = 'multi' extensions = { None: SourcePriority.MEDIUM, 'json': SourcePriority.PREFERRED, 'yaml': SourcePriority.PREFERRED, 'yml': SourcePriority.PREFERRED, } mimeTypes = { None: SourcePriority.FALLBACK, 'application/json': SourcePriority.PREFERRED, 'application/yaml': SourcePriority.PREFERRED, 'text/yaml': SourcePriority.PREFERRED, } _minTileSize = 64 _maxTileSize = 4096 _defaultTileSize = 256 _maxOpenHandles = 6 def __init__(self, path, **kwargs): # noqa """ Initialize the tile class. See the base class for other available parameters. :param path: a filesystem path for the tile source. """ super().__init__(path, **kwargs) _lazyImport() self._validator = _validator self._largeImagePath = self._getLargeImagePath() self._lastOpenSourceLock = threading.RLock() # 'c' must be first as channels are special because they can have names self._axesList = ['c', 'z', 't', 'xy'] if isinstance(path, dict) and 'sources' in path: self._info = path.copy() self._basePath = '.' self._largeImagePath = '.' try: self._validator.validate(self._info) except jsonschema.ValidationError: msg = 'File cannot be validated via multi-source reader.' raise TileSourceError(msg) elif not os.path.isfile(self._largeImagePath): try: possibleYaml = self._largeImagePath.split('multi://', 1)[-1] self._info = yaml.safe_load(possibleYaml) self._validator.validate(self._info) self._basePath = Path('.') except Exception: raise TileSourceFileNotFoundError(self._largeImagePath) from None else: try: with builtins.open(self._largeImagePath) as fptr: start = fptr.read(1024).strip() if start[:1] not in ('{', '#', '-') and (start[:1] < 'a' or start[:1] > 'z'): msg = 'File cannot be opened via multi-source reader.' raise TileSourceError(msg) fptr.seek(0) try: import orjson self._info = orjson.loads(fptr.read()) except Exception: fptr.seek(0) self._info = yaml.safe_load(fptr) except (json.JSONDecodeError, yaml.YAMLError, UnicodeDecodeError): msg = 'File cannot be opened via multi-source reader.' raise TileSourceError(msg) try: self._validator.validate(self._info) except jsonschema.ValidationError: msg = 'File cannot be validated via multi-source reader.' raise TileSourceError(msg) self._basePath = Path(self._largeImagePath).parent self._basePath /= Path(self._info.get('basePath', '.')) for axis in self._info.get('axes', []): if axis not in self._axesList: self._axesList.append(axis) self._collectFrames() def _resolvePathPatterns(self, sources, source): """ Given a source resolve pathPattern entries to specific paths. Ensure that all paths exist. :param sources: a list to append found sources to. :param source: the specific source record with a pathPattern to resolve. """ kept = [] pattern = re.compile(source['pathPattern']) basedir = self._basePath / source['path'] if (self._basePath.name == Path(self._largeImagePath).name and (self._basePath.parent / source['path']).is_dir()): basedir = self._basePath.parent / source['path'] basedir = basedir.resolve() for entry in basedir.iterdir(): match = pattern.search(entry.name) if match: if entry.is_file(): kept.append((entry.name, entry, match)) elif entry.is_dir() and (entry / entry.name).is_file(): kept.append((entry.name, entry / entry.name, match)) for idx, (_, entry, match) in enumerate(sorted(kept)): subsource = copy.deepcopy(source) # Use named match groups to augment source values. for k, v in match.groupdict().items(): if v.isdigit(): v = int(v) if k.endswith('1'): v -= 1 if '.' in k: subsource.setdefault(k.split('.', 1)[0], {})[k.split('.', 1)[1]] = v else: subsource[k] = v subsource['path'] = entry for axis in self._axesList: stepKey = '%sStep' % axis valuesKey = '%sValues' % axis if stepKey in source: if axis in source or valuesKey not in source: subsource[axis] = subsource.get(axis, 0) + idx * source[stepKey] else: subsource[valuesKey] = [ val + idx * source[stepKey] for val in subsource[valuesKey]] del subsource['pathPattern'] sources.append(subsource) def _resolveSourcePath(self, sources, source): """ Given a single source without a pathPattern, resolve to a specific path, ensuring that it exists. :param sources: a list to append found sources to. :param source: the specific source record to resolve. """ source = copy.deepcopy(source) if source['path'] != '__none__': sourcePath = Path(source['path']) source['path'] = self._basePath / sourcePath if not source['path'].is_file(): altpath = self._basePath.parent / sourcePath / sourcePath.name if altpath.is_file(): source['path'] = altpath if not source['path'].is_file(): raise TileSourceFileNotFoundError(str(source['path'])) sources.append(source) def _resolveFramePaths(self, sourceList): """ Given a list of sources, resolve path and pathPattern entries to specific paths. Ensure that all paths exist. :param sourceList: a list of source entries to resolve and check. :returns: sourceList: a expanded and checked list of sources. """ # we want to work with both _basePath / <path> and # _basePath / .. / <path> / <name> to be compatible with Girder # resource layouts. sources = [] for source in sourceList: if source.get('pathPattern'): self._resolvePathPatterns(sources, source) else: self._resolveSourcePath(sources, source) for source in sources: if hasattr(source.get('path'), 'resolve'): source['path'] = source['path'].resolve(False) return sources def _sourceBoundingBox(self, source, width, height): """ Given a source with a possible transform and an image width and height, compute the bounding box for the source. If a crop is used, it is included in the results. If a non-identify transform is used, both it and its inverse are included in the results. :param source: a dictionary that may have a position record. :param width: the width of the source to transform. :param height: the height of the source to transform. :returns: a dictionary with left, top, right, bottom of the bounding box in the final coordinate space. """ pos = source.get('position') bbox = {'left': 0, 'top': 0, 'right': width, 'bottom': height} if not pos: return bbox x0, y0, x1, y1 = 0, 0, width, height if 'crop' in pos: x0 = min(max(pos['crop'].get('left', x0), 0), width) y0 = min(max(pos['crop'].get('top', y0), 0), height) x1 = min(max(pos['crop'].get('right', x1), x0), width) y1 = min(max(pos['crop'].get('bottom', y1), y0), height) bbox['crop'] = {'left': x0, 'top': y0, 'right': x1, 'bottom': y1} corners = np.array([[x0, y0, 1], [x1, y0, 1], [x0, y1, 1], [x1, y1, 1]]) m = np.identity(3) m[0][0] = pos.get('s11', 1) * pos.get('scale', 1) m[0][1] = pos.get('s12', 0) * pos.get('scale', 1) m[0][2] = pos.get('x', 0) m[1][0] = pos.get('s21', 0) * pos.get('scale', 1) m[1][1] = pos.get('s22', 1) * pos.get('scale', 1) m[1][2] = pos.get('y', 0) if not np.array_equal(m, np.identity(3)): bbox['transform'] = m try: bbox['inverse'] = np.linalg.inv(m) except np.linalg.LinAlgError: msg = 'The position for a source is not invertable (%r)' raise TileSourceError(msg, pos) transcorners = np.dot(m, corners.T) bbox['left'] = min(transcorners[0]) bbox['top'] = min(transcorners[1]) bbox['right'] = max(transcorners[0]) bbox['bottom'] = max(transcorners[1]) return bbox def _axisKey(self, source, value, key): """ Get the value for a particular axis given the source specification. :param source: a source specification. :param value: a default or initial value. :param key: the axis key. One of frame, c, z, t, xy. :returns: the axis key (an integer). """ if source.get('%sSet' % key) is not None: return source.get('%sSet' % key) vals = source.get('%sValues' % key) or [] if not vals: axisKey = value + source.get(key, 0) elif len(vals) == 1: axisKey = vals[0] + value + source.get(key, 0) elif value < len(vals): axisKey = vals[value] + source.get(key, 0) else: axisKey = (vals[len(vals) - 1] + (vals[len(vals) - 1] - vals[len(vals) - 2]) * (value - len(vals) + source.get(key, 0))) return axisKey def _adjustFramesAsAxes(self, frames, idx, framesAsAxes): """ Given a dictionary of axes and strides, relabel the indices in a frame as if it was based on those strides. :param frames: a list of frames from the tile source. :param idx: 0-based index of the frame to adjust. :param framesAsAxes: dictionary of axes and strides to apply. :returns: the adjusted frame record. """ axisRange = {} slen = len(frames) check = 1 for stride, axis in sorted([[v, k] for k, v in framesAsAxes.items()], reverse=True): axisRange[axis] = slen // stride slen = stride check *= axisRange[axis] if check != len(frames) and not hasattr(self, '_warnedAdjustFramesAsAxes'): self.logger.warning('framesAsAxes strides do not use all frames.') self._warnedAdjustFramesAsAxes = True frame = frames[idx].copy() for axis in self._axesList: frame.pop('Index' + axis.upper(), None) for axis, stride in framesAsAxes.items(): frame['Index' + axis.upper()] = (idx // stride) % axisRange[axis] return frame def _addSourceToFrames(self, tsMeta, source, sourceIdx, frameDict): """ Add a source to the all appropriate frames. :param tsMeta: metadata from the source or from a matching uniform source. :param source: the source record. :param sourceIdx: the index of the source. :param frameDict: a dictionary to log the found frames. """ frames = tsMeta.get('frames', [{'Frame': 0, 'Index': 0}]) # Channel names channels = tsMeta.get('channels', []) if source.get('channels'): channels[:len(source['channels'])] = source['channels'] elif source.get('channel'): channels[:1] = [source['channel']] if len(channels) > len(self._channels): self._channels += channels[len(self._channels):] if not any(key in source for key in { 'frame', 'frameValues'} | set(self._axesList) | {f'{axis}Values' for axis in self._axesList}): source = source.copy() if len(frameDict['byFrame']): source['frame'] = max(frameDict['byFrame'].keys()) + 1 if len(frameDict['byAxes']): source['z'] = max( aKey[self._axesList.index('z')] for aKey in frameDict['byAxes']) + 1 for frameIdx, frame in enumerate(frames): if 'frames' in source and frameIdx not in source['frames']: continue if source.get('framesAsAxes'): frame = self._adjustFramesAsAxes(frames, frameIdx, source.get('framesAsAxes')) fKey = self._axisKey(source, frameIdx, 'frame') cIdx = frame.get('IndexC', 0) aKey = tuple(self._axisKey(source, frame.get(f'Index{axis.upper()}') or 0, axis) for axis in self._axesList) channel = channels[cIdx] if cIdx < len(channels) else None # We add the channel name to our channel list if the individual # source lists the channel name or a set of channels OR the source # appends channels to an existing set. if channel and channel not in self._channels and ( 'channel' in source or 'channels' in source or len(self._channels) == aKey[0]): self._channels.append(channel) # Adjust the channel number if the source named the channel; do not # do so in other cases if (channel and channel in self._channels and 'c' not in source and 'cValues' not in source): aKey = tuple([self._channels.index(channel)] + list(aKey[1:])) kwargs = source.get('params', {}).copy() if 'style' in source: kwargs['style'] = source['style'] kwargs.pop('frame', None) kwargs.pop('encoding', None) frameDict['byFrame'].setdefault(fKey, []) frameDict['byFrame'][fKey].append({ 'sourcenum': sourceIdx, 'frame': frameIdx, 'kwargs': kwargs, }) frameDict['axesAllowed'] = (frameDict['axesAllowed'] and ( len(frames) <= 1 or 'IndexRange' in tsMeta)) or aKey != tuple([0] * len(aKey)) frameDict['byAxes'].setdefault(aKey, []) frameDict['byAxes'][aKey].append({ 'sourcenum': sourceIdx, 'frame': frameIdx, 'kwargs': kwargs, }) def _frameDictToFrames(self, frameDict): """ Given a frame dictionary, populate a frame list. :param frameDict: a dictionary with known frames stored in byAxes if axesAllowed is True or byFrame if it is False. :returns: a list of frames with enough information to generate them. """ frames = [] if not frameDict['axesAllowed']: frameCount = max(frameDict['byFrame']) + 1 for frameIdx in range(frameCount): frame = {'sources': frameDict['byFrame'].get(frameIdx, [])} frames.append(frame) else: axesCount = [max(aKey[idx] for aKey in frameDict['byAxes']) + 1 for idx in range(len(self._axesList))] for aKey in itertools.product(*[range(count) for count in axesCount][::-1]): aKey = tuple(aKey[::-1]) frame = { 'sources': frameDict['byAxes'].get(aKey, []), } for idx, axis in enumerate(self._axesList): if axesCount[idx] > 1: frame[f'Index{axis.upper()}'] = aKey[idx] frames.append(frame) return frames def _collectFrames(self): """ Using the specification in _info, enumerate the source files and open at least the first two of them to build up the frame specifications. """ self._sources = sources = self._resolveFramePaths(self._info['sources']) self.logger.debug('Sources: %r', sources) frameDict = {'byFrame': {}, 'byAxes': {}, 'axesAllowed': True} numChecked = 0 self._associatedImages = {} self._sourcePaths = {} self._channels = self._info.get('channels') or [] absLargeImagePath = os.path.abspath(self._largeImagePath) computedWidth = computedHeight = 0 self.tileWidth = self._info.get('tileWidth') self.tileHeight = self._info.get('tileHeight') self._nativeMagnification = { 'mm_x': self._info.get('scale', {}).get('mm_x') or None, 'mm_y': self._info.get('scale', {}).get('mm_y') or None, 'magnification': self._info.get('scale', {}).get('magnification') or None, } # Walk through the sources, opening at least the first two, and # construct a frame list. Each frame is a list of sources that affect # it along with the frame number from that source. lastSource = None bandCount = 0 for sourceIdx, source in enumerate(sources): path = source['path'] if os.path.abspath(path) == absLargeImagePath: msg = 'Multi source specification is self-referential' raise TileSourceError(msg) similar = False if (lastSource and source['path'] == lastSource['path'] and source.get('params') == lastSource.get('params')): similar = True if not similar and (numChecked < 2 or not self._info.get('uniformSources')): # need kwargs of frame, style? ts = self._openSource(source) self.tileWidth = self.tileWidth or ts.tileWidth self.tileHeight = self.tileHeight or ts.tileHeight if not hasattr(self, '_firstdtype'): self._firstdtype = ( ts.dtype if not self._info.get('dtype') else np.dtype(self._info['dtype'])) if self._info.get('dtype'): self._dtype = np.dtype(self._info['dtype']) if not numChecked: tsMag = ts.getNativeMagnification() for key in self._nativeMagnification: self._nativeMagnification[key] = ( self._nativeMagnification[key] or tsMag.get(key)) numChecked += 1 tsMeta = ts.getMetadata() bandCount = max(bandCount, ts.bandCount or 0) if 'bands' in tsMeta and self._info.get('singleBand') is not True: if not hasattr(self, '_bands'): self._bands = {} self._bands.update(tsMeta['bands']) lastSource = source self._bandCount = 1 if self._info.get('singleBand') else ( len(self._bands) if hasattr(self, '_bands') else (bandCount or None)) bbox = self._sourceBoundingBox(source, tsMeta['sizeX'], tsMeta['sizeY']) computedWidth = max(computedWidth, int(math.ceil(bbox['right']))) computedHeight = max(computedHeight, int(math.ceil(bbox['bottom']))) # Record this path if path not in self._sourcePaths: self._sourcePaths[path] = { 'frames': set(), 'sourcenum': set(), } # collect associated images for basekey in ts.getAssociatedImagesList(): key = basekey keyidx = 0 while key in self._associatedImages: keyidx += 1 key = '%s-%d' % (basekey, keyidx) self._associatedImages[key] = { 'sourcenum': sourceIdx, 'key': key, } source['metadata'] = tsMeta source['bbox'] = bbox self._sourcePaths[path]['sourcenum'].add(sourceIdx) # process metadata to determine what frames are used, etc. self._addSourceToFrames(tsMeta, source, sourceIdx, frameDict) # Check frameDict and create frame record self._frames = self._frameDictToFrames(frameDict) self.tileWidth = min(max(self.tileWidth, self._minTileSize), self._maxTileSize) self.tileHeight = min(max(self.tileHeight, self._minTileSize), self._maxTileSize) self.sizeX = self._info.get('width') or computedWidth self.sizeY = self._info.get('height') or computedHeight self.levels = int(max(1, math.ceil(math.log( max(self.sizeX / self.tileWidth, self.sizeY / self.tileHeight)) / math.log(2)) + 1))
[docs] def getNativeMagnification(self): """ Get the magnification at a particular level. :return: magnification, width of a pixel in mm, height of a pixel in mm. """ return self._nativeMagnification.copy()
def _openSource(self, source, params=None): """ Open a tile source, possibly using a specific source. :param source: a dictionary with path, params, and possibly sourceName. :param params: a dictionary of parameters to pass to the open call. :returns: a tile source. """ with self._lastOpenSourceLock: if (hasattr(self, '_lastOpenSource') and self._lastOpenSource['source'] == source and (self._lastOpenSource['params'] == params or ( params == {} and self._lastOpenSource['params'] is None))): return self._lastOpenSource['ts'] if not len(large_image.tilesource.AvailableTileSources): large_image.tilesource.loadTileSources() if ('sourceName' not in source or source['sourceName'] not in large_image.tilesource.AvailableTileSources): openFunc = large_image.open else: openFunc = large_image.tilesource.AvailableTileSources[source['sourceName']] origParams = params if params is None: params = source.get('params', {}) ts = openFunc(source['path'], **params) if (self._dtype and np.dtype(ts.dtype).kind == 'f' and (self._dtype == 'check' or np.dtype(self._dtype).kind != 'f') and 'sampleScale' not in source and 'sampleOffset' not in source): minval = maxval = 0 for f in range(ts.frames): ftile = ts.getTile(x=0, y=0, z=0, frame=f, numpyAllowed='always') minval = min(minval, np.amin(ftile)) maxval = max(maxval, np.amax(ftile)) if minval >= 0 and maxval <= 1: source['sampleScale'] = None elif minval >= 0: source['sampleScale'] = 2 ** math.ceil(math.log2(maxval)) else: source['sampleScale'] = 2 ** math.ceil(math.log2(max(-minval, maxval)) + 1) source['sampleOffset'] = source['sampleScale'] / 2 source['sourceName'] = ts.name with self._lastOpenSourceLock: self._lastOpenSource = { 'source': source, 'params': origParams, 'ts': ts, } return ts
[docs] def getAssociatedImage(self, imageKey, *args, **kwargs): """ Return an associated image. :param imageKey: the key of the associated image to retrieve. :param kwargs: optional arguments. Some options are width, height, encoding, jpegQuality, jpegSubsampling, and tiffCompression. :returns: imageData, imageMime: the image data and the mime type, or None if the associated image doesn't exist. """ if imageKey not in self._associatedImages: return source = self._sources[self._associatedImages[imageKey]['sourcenum']] ts = self._openSource(source) return ts.getAssociatedImage(self._associatedImages[imageKey]['key'], *args, **kwargs)
[docs] def getAssociatedImagesList(self): """ Return a list of associated images. :return: the list of image keys. """ return sorted(self._associatedImages.keys())
[docs] def getMetadata(self): """ Return a dictionary of metadata containing levels, sizeX, sizeY, tileWidth, tileHeight, magnification, mm_x, mm_y, and frames. :returns: metadata dictionary. """ result = super().getMetadata() if len(self._frames) > 1: result['frames'] = [ {k: v for k, v in frame.items() if k.startswith('Index')} for frame in self._frames] self._addMetadataFrameInformation(result, self._channels) if hasattr(self, '_bands'): result['bands'] = self._bands.copy() return result
[docs] def getInternalMetadata(self, **kwargs): """ Return additional known metadata about the tile source. Data returned from this method is not guaranteed to be in any particular format or have specific values. Also, only the first 100 sources are used. :returns: a dictionary of data or None. """ result = { 'frames': copy.deepcopy(self._frames), 'sources': copy.deepcopy(self._sources), 'sourceFiles': [], } for path in list(self._sourcePaths.values())[:100]: source = self._sources[min(path['sourcenum'])] ts = self._openSource(source) result['sourceFiles'].append({ 'path': source['path'], 'internal': ts.getInternalMetadata(), }) return result
def _mergeTiles(self, base, tile, x, y): """ Add a tile to an existing tile. The existing tile is expanded as needed, and the number of channels will always be the greater of the two. :param base: numpy array base tile. May be None. May be modified. :param tile: numpy tile to add. :param x: location to add the tile. :param y: location to add the tile. :returns: a numpy tile. """ # Replace non blank pixels, aggregating opacity appropriately x = int(round(x)) y = int(round(y)) if base is None and not x and not y: return tile if base is None: base = np.zeros((0, 0, tile.shape[2]), dtype=tile.dtype) base, tile = _makeSameChannelDepth(base, tile) if base.shape[0] < tile.shape[0] + y: vfill = np.zeros( (tile.shape[0] + y - base.shape[0], base.shape[1], base.shape[2]), dtype=base.dtype) if base.shape[2] in {2, 4}: vfill[:, :, -1] = fullAlphaValue(base.dtype) base = np.vstack((base, vfill)) if base.shape[1] < tile.shape[1] + x: hfill = np.zeros( (base.shape[0], tile.shape[1] + x - base.shape[1], base.shape[2]), dtype=base.dtype) if base.shape[2] in {2, 4}: hfill[:, :, -1] = fullAlphaValue(base.dtype) base = np.hstack((base, hfill)) if base.flags.writeable is False: base = base.copy() if base.shape[2] in {2, 4}: baseA = base[y:y + tile.shape[0], x:x + tile.shape[1], -1].astype( float) / fullAlphaValue(base.dtype) tileA = tile[:, :, -1].astype(float) / fullAlphaValue(tile.dtype) outA = tileA + baseA * (1 - tileA) base[y:y + tile.shape[0], x:x + tile.shape[1], :-1] = ( np.where(tileA[..., np.newaxis], tile[:, :, :-1] * tileA[..., np.newaxis], 0) + base[y:y + tile.shape[0], x:x + tile.shape[1], :-1] * baseA[..., np.newaxis] * (1 - tileA[..., np.newaxis]) ) / np.where(outA[..., np.newaxis], outA[..., np.newaxis], 1) base[y:y + tile.shape[0], x:x + tile.shape[1], -1] = outA * fullAlphaValue(base.dtype) else: base[y:y + tile.shape[0], x:x + tile.shape[1], :] = tile return base def _getTransformedTile(self, ts, transform, corners, scale, frame, crop=None, firstMerge=False): """ Determine where the target tile's corners are located on the source. Fetch that so that we have at least sqrt(2) more resolution, then use scikit-image warp to transform it. scikit-image does a better and faster job than scipy.ndimage.affine_transform. :param ts: the source of the image to transform. :param transform: a 3x3 affine 2d matrix for transforming the source image at full resolution to the target tile at full resolution. :param corners: corners of the destination in full res coordinates. corner 0 must be the upper left, 2 must be the lower right. :param scale: scaling factor from full res to the target resolution. :param frame: frame number of the source image. :param crop: an optional dictionary to crop the source image in full resolution, untransformed coordinates. This may contain left, top, right, and bottom values in pixels. :param firstMerge: if False and using an alpha channel, transform with nearest neighbor rather than a higher order function to avoid transparency effects. :returns: a numpy array tile or None, x, y coordinates within the target tile for the placement of the numpy tile array. """ try: import skimage.transform except ImportError: msg = 'scikit-image is required for affine transforms.' raise TileSourceError(msg) # From full res source to full res destination transform = transform.copy() if transform is not None else np.identity(3) # Scale dest corners to actual size; adjust transform for the same corners = np.array(corners) corners[:, :2] //= scale transform[:2, :] /= scale # Offset so our target is the actual destination array we use transform[0][2] -= corners[0][0] transform[1][2] -= corners[0][1] corners[:, :2] -= corners[0, :2] outw, outh = corners[2][0], corners[2][1] if not outh or not outw: return None, 0, 0 srccorners = np.dot(np.linalg.inv(transform), np.array(corners).T).T.tolist() minx = min(c[0] for c in srccorners) maxx = max(c[0] for c in srccorners) miny = min(c[1] for c in srccorners) maxy = max(c[1] for c in srccorners) srcscale = max((maxx - minx) / outw, (maxy - miny) / outh) # we only need every 1/srcscale pixel. srcscale = int(2 ** math.log2(max(1, srcscale))) # Pad to reduce edge effects at tile boundaries border = int(math.ceil(4 * srcscale)) region = { 'left': int(max(0, minx - border) // srcscale) * srcscale, 'top': int(max(0, miny - border) // srcscale) * srcscale, 'right': int((min(ts.sizeX, maxx + border) + srcscale - 1) // srcscale) * srcscale, 'bottom': int((min(ts.sizeY, maxy + border) + srcscale - 1) // srcscale) * srcscale, } if crop: region['left'] = max(region['left'], crop.get('left', region['left'])) region['top'] = max(region['top'], crop.get('top', region['top'])) region['right'] = min(region['right'], crop.get('right', region['right'])) region['bottom'] = min(region['bottom'], crop.get('bottom', region['bottom'])) output = { 'maxWidth': (region['right'] - region['left']) // srcscale, 'maxHeight': (region['bottom'] - region['top']) // srcscale, } if output['maxWidth'] <= 0 or output['maxHeight'] <= 0: return None, 0, 0 srcImage, _ = ts.getRegion( region=region, output=output, frame=frame, resample=None, format=TILE_FORMAT_NUMPY) # This is the region we actually took in our source coordinates, scaled # for if we took a low res version regioncorners = np.array([ [region['left'] // srcscale, region['top'] // srcscale, 1], [region['right'] // srcscale, region['top'] // srcscale, 1], [region['right'] // srcscale, region['bottom'] // srcscale, 1], [region['left'] // srcscale, region['bottom'] // srcscale, 1]], dtype=float) # adjust our transform if we took a low res version of the source transform[:2, :2] *= srcscale # Find where the source corners land on the destination. preshiftcorners = (np.dot(transform, regioncorners.T).T).tolist() regioncorners[:, :2] -= regioncorners[0, :2] destcorners = (np.dot(transform, regioncorners.T).T).tolist() offsetx, offsety = None, None for idx in range(4): if offsetx is None or destcorners[idx][0] < offsetx: x = preshiftcorners[idx][0] offsetx = destcorners[idx][0] - (x - math.floor(x)) if offsety is None or destcorners[idx][1] < offsety: y = preshiftcorners[idx][1] offsety = destcorners[idx][1] - (y - math.floor(y)) transform[0][2] -= offsetx transform[1][2] -= offsety x, y = int(math.floor(x)), int(math.floor(y)) # Recompute where the source corners will land destcorners = (np.dot(transform, regioncorners.T).T).tolist() destShape = [ max(max(math.ceil(c[1]) for c in destcorners), srcImage.shape[0]), max(max(math.ceil(c[0]) for c in destcorners), srcImage.shape[1]), ] if max(0, -x) or max(0, -y): transform[0][2] -= max(0, -x) transform[1][2] -= max(0, -y) destShape[0] -= max(0, -y) destShape[1] -= max(0, -x) x += max(0, -x) y += max(0, -y) destShape = [min(destShape[0], outh - y), min(destShape[1], outw - x)] if destShape[0] <= 0 or destShape[1] <= 0: return None, None, None # Add an alpha band if needed. This has to be done before the # transform if it isn't the first tile, since the unused transformed # areas need to have a zero alpha value if srcImage.shape[2] in {1, 3}: _, srcImage = _makeSameChannelDepth(np.zeros((1, 1, srcImage.shape[2] + 1)), srcImage) useNearest = srcImage.shape[2] in {2, 4} and not firstMerge # skimage.transform.warp is faster and has less artifacts than # scipy.ndimage.affine_transform. It is faster than using cupy's # version of scipy's affine_transform when the source and destination # images are converted from numpy to cupy and back in this method. destImage = skimage.transform.warp( # Although using np.float32 could reduce memory use, it doesn't # provide any speed improvement srcImage.astype(float), skimage.transform.AffineTransform(np.linalg.inv(transform)), order=0 if useNearest else 3, output_shape=(destShape[0], destShape[1], srcImage.shape[2]), ).astype(srcImage.dtype) return destImage, x, y def _addSourceToTile(self, tile, sourceEntry, corners, scale): """ Add a source to the current tile. :param tile: a numpy array with the tile, or None if there is no data yet. :param sourceEntry: the current record from the sourceList. This contains the sourcenum, kwargs to apply when opening the source, and the frame within the source to fetch. :param corners: the four corners of the tile in the main image space coordinates. :param scale: power of 2 scale of the output; this is the number of pixels that are conceptually aggregated from the source for one output pixel. :returns: a numpy array of the tile. """ source = self._sources[sourceEntry['sourcenum']] # If tile is outside of bounding box, skip it bbox = source['bbox'] if (corners[2][0] <= bbox['left'] or corners[0][0] >= bbox['right'] or corners[2][1] <= bbox['top'] or corners[0][1] >= bbox['bottom']): return tile ts = self._openSource(source, sourceEntry['kwargs']) transform = bbox.get('transform') x = y = 0 # If there is no transform or the diagonals are positive and there is # no sheer and integer pixel alignment, use getRegion with an # appropriate size scaleX = transform[0][0] if transform is not None else 1 scaleY = transform[1][1] if transform is not None else 1 if ((transform is None or ( transform[0][0] > 0 and transform[0][1] == 0 and transform[1][0] == 0 and transform[1][1] > 0 and transform[0][2] % scaleX == 0 and transform[1][2] % scaleY == 0)) and ((scaleX % scale) == 0 or math.log(scaleX, 2).is_integer()) and ((scaleY % scale) == 0 or math.log(scaleY, 2).is_integer())): srccorners = ( list(np.dot(bbox['inverse'], np.array(corners).T).T) if transform is not None else corners) region = { 'left': srccorners[0][0], 'top': srccorners[0][1], 'right': srccorners[2][0], 'bottom': srccorners[2][1], } output = { 'maxWidth': (corners[2][0] - corners[0][0]) // scale, 'maxHeight': (corners[2][1] - corners[0][1]) // scale, } if region['left'] < 0: x -= region['left'] * scaleX // scale output['maxWidth'] += int(region['left'] * scaleX // scale) region['left'] = 0 if region['top'] < 0: y -= region['top'] * scaleY // scale output['maxHeight'] += int(region['top'] * scaleY // scale) region['top'] = 0 if region['right'] > source['metadata']['sizeX']: output['maxWidth'] -= int( (region['right'] - source['metadata']['sizeX']) * scaleX // scale) region['right'] = source['metadata']['sizeX'] if region['bottom'] > source['metadata']['sizeY']: output['maxHeight'] -= int( (region['bottom'] - source['metadata']['sizeY']) * scaleY // scale) region['bottom'] = source['metadata']['sizeY'] for key in region: region[key] = int(round(region[key])) self.logger.debug('getRegion: ts: %r, region: %r, output: %r', ts, region, output) sourceTile, _ = ts.getRegion( region=region, output=output, frame=sourceEntry.get('frame', 0), resample=None, format=TILE_FORMAT_NUMPY) else: sourceTile, x, y = self._getTransformedTile( ts, transform, corners, scale, sourceEntry.get('frame', 0), source.get('position', {}).get('crop'), firstMerge=tile is None) if sourceTile is not None and all(dim > 0 for dim in sourceTile.shape): targetDtype = np.dtype(self._info.get('dtype', ts.dtype)) changeDtype = sourceTile.dtype != targetDtype if source.get('sampleScale') or source.get('sampleOffset'): sourceTile = sourceTile.astype(float) if source.get('sampleOffset'): sourceTile[:, :, :-1] += source['sampleOffset'] if source.get('sampleScale') and source.get('sampleScale') != 1: sourceTile[:, :, :-1] /= source['sampleScale'] if sourceTile.dtype != targetDtype: if changeDtype: sourceTile = ( sourceTile.astype(float) * fullAlphaValue(targetDtype) / fullAlphaValue(sourceTile)) sourceTile = sourceTile.astype(targetDtype) tile = self._mergeTiles(tile, sourceTile, x, y) return tile
[docs] @methodcache() def getTile(self, x, y, z, pilImageAllowed=False, numpyAllowed=False, **kwargs): frame = self._getFrame(**kwargs) self._xyzInRange(x, y, z, frame, len(self._frames) if hasattr(self, '_frames') else None) scale = 2 ** (self.levels - 1 - z) corners = [[ x * self.tileWidth * scale, y * self.tileHeight * scale, 1, ], [ min((x + 1) * self.tileWidth * scale, self.sizeX), y * self.tileHeight * scale, 1, ], [ min((x + 1) * self.tileWidth * scale, self.sizeX), min((y + 1) * self.tileHeight * scale, self.sizeY), 1, ], [ x * self.tileWidth * scale, min((y + 1) * self.tileHeight * scale, self.sizeY), 1, ]] sourceList = self._frames[frame]['sources'] tile = None # If the first source does not completely cover the output tile or uses # a transformation, create a tile that is the desired size and fill it # with the background color. fill = not len(sourceList) if not fill: firstsource = self._sources[sourceList[0]['sourcenum']] fill = 'transform' in firstsource['bbox'] or any( cx < firstsource['bbox']['left'] or cx > firstsource['bbox']['right'] or cy < firstsource['bbox']['top'] or cy > firstsource['bbox']['bottom'] for cx, cy, _ in corners) if fill: colors = self._info.get('backgroundColor') if colors: tile = np.full((self.tileHeight, self.tileWidth, len(colors)), colors, dtype=getattr(self, '_firstdtype', np.uint8)) # Add each source to the tile for sourceEntry in sourceList: tile = self._addSourceToTile(tile, sourceEntry, corners, scale) if tile is None: # TODO number of channels? colors = self._info.get('backgroundColor', [0]) if colors: tile = np.full((self.tileHeight, self.tileWidth, len(colors)), colors, dtype=getattr(self, '_firstdtype', np.uint8)) if self._info.get('singleBand'): tile = tile[:, :, :1] elif tile.shape[2] in {2, 4} and (self._bandCount or tile.shape[2]) < tile.shape[2]: # remove a needless alpha channel if np.all(tile[:, :, -1] == fullAlphaValue(tile)): tile = tile[:, :, :-1] if self._bandCount and tile.shape[2] < self._bandCount: _, tile = _makeSameChannelDepth(np.zeros((1, 1, self._bandCount)), tile) # We should always have a tile return self._outputTile(tile, TILE_FORMAT_NUMPY, x, y, z, pilImageAllowed, numpyAllowed, **kwargs)
[docs] def open(*args, **kwargs): """ Create an instance of the module class. """ return MultiFileTileSource(*args, **kwargs)
[docs] def canRead(*args, **kwargs): """ Check if an input can be read by the module class. """ return MultiFileTileSource.canRead(*args, **kwargs)